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ABSTRACT: We studied the nonisothermal flow of Car-
reau fluid in a coat hanger die. A general three-dimensional
finite volume code was developed for the purpose of flow
analysis. The pressure distribution and velocity distribution
were obtained in addition to the temperature distribution.
The results illustrated that the highest temperature occurred
more by the center of manifold than by the die-lip region. In
the regions where the die gap was small relatively, the wall
temperature played a key role in the determination of the

temperature distribution in the melt. However, in the man-
ifold, the viscous dissipation was the key factor that deter-
mined the temperature distribution in the melt where the
heat conduction was relatively poor because of the thicker
gap. © 2006 Wiley Periodicals, Inc. ] Appl Polym Sci 101: 29112918,
2006
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INTRODUCTION

Coat hanger dies are used extensively for delivering
wide uniform sheets of liquids in polymer processing
industries. As we know, they provide a smooth, dead-
spot, free-flow path and thus produce sheet without
weld lines." A large number of published articles have
been devoted to the design and optimization of coat
hanger dies. These articles can be put into two cate-
gories,2 that is, analytical solution and numerical sim-
ulation. The analytical models were used for the initial
determination of coat hanger geometries rather than
for a precise description of flow inside a whole die. It
is well known that no simple mathematical formula
can be used to compute the flow regimes within a coat
hanger die. Consequently, the analytical models were
mainly used for one-dimensional or two-dimensional
flow analysis. Numerical methods can be used, espe-
cially for dies with complicated geometries and for
polymer melts with complex natures and physical
properties. However, most published work related to
numerical methods has focused on the introduction of
methods used for die design and the description of
comparisons of simulation results against experimen-
tal data.’> Only a few recent publications have pro-
vided any detailed analyses of the flow field in pipe
dies.* Huang et al.’ gave a comprehensive three-di-
mensional (3-D) analysis of polymer melt flow in a
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coat hanger die with a commercially available pack-
age, FIDAP. However, in that article, the research was
based on the isothermal flow, and the flow index (1)
was set to be constant. In fact, the isothermal flow of
polymer melts are difficult to achieve in engineering
practice,” and 1 is dependent on the temperature.®

This research program has concentrated on a com-
prehensive analysis of polymer melt flow in a coat
hanger die by means of 3-D computational fluid dy-
namics techniques. The polymeric liquid was noniso-
thermal, and the Carreau model was used to describe
the rheological behavior of the polymer melt. The aim
of this research was to provide a comprehensive un-
derstanding of the flow behavior of a polymer melt
within a coat hanger die on which further optimiza-
tion of die design can be based.

ANALYSIS

The polymer melt flow in a coat hanger die was ex-
amined by means of 3-D computational fluid dynam-
ics techniques. A schematic of the die considered here
is shown in Figure 1. The flow simulation was full 3-D
and nonisothermal. Hence, the momentum and en-
ergy conservation equations were coupled through
temperature-dependent constitutive equations. In the
numerical analysis of extrusion dies, the Carreau
models were used with consideration of its better
representations of the entire viscosity (1) curve. The
temperature-shifting function was used to illustrate
the temperature influence on the rheological aspects of
polymer fluid.
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Figure 1 Schematic of a coat hanger die.

THEORETICAL DEVELOPMENTS
Nonisothermal modeling of polymer melt

The general 3-D fluid motion in a coat hanger die is
considered here, and a Cartesian coordinate system
(x,y,z) can be introduced to such die. The flow through
extrusion die for an incompressible fluid, such as a
polymer melt, is governed by the usual conservation
equations of mass, momentum, and energy, that is

Vv =10 (1)
—Vp+Vr=0 )
pC,v VT = k,V°T + =:Vy (3)

where v is the velocity vector, p is the scalar pressure,
7 is the extra stress tensor, p is the density, Cp is the
heat capacity, k, is the thermal conductivity, and T is
the temperature.

v is expressed as

v =ui+vj +wk (4)

where 1, v, w are velocity components in x, y, z direc-
tion, respectively, i, j, k are the unit vector in x, y, z
direction and the shear stress (1) is defined as

7=n(y)(Vv + Vv') (5)

Constitutive equation

A fully 3-D analysis requires a continuous 7 corre-
lation that extends from zero shear rate all the way to
the highest shear rate that may occur in a die, such as
at the walls of the die.” Hence, the Carreau model was
used as a better representation of the entire curve.”®
To reflect the influence of nonisothermal effects on the
rheological behavior of polymer melt, the tempera-
ture-shifting function was introduced. The nonisother-
mal constitutive equation used here can be expressed
as

n—1 EO 1 1
n=mnll + (Ay)’]TZ exp [R(T - To)] ©
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where A is the time constant.
The value of local shear rate () is calculated by

7= 7/ 7)

where 7 is the shear rate tensor.
with the following equation

1= Vv + VT (8)

where 7, is the viscosity at shear rates (¥’s) approach-
ing zero, vy is the relaxation time obtained from the 7
curve of the material, Ej is the activation energy con-
stant, R, is the ideal gas constant, and T, is a reference
temperature. E, was determined from 7, data.” n was
assumed to be dependent on the temperature through
the following expression, which could be derived
from experimental data:

T
n(T) = . +b 9)
where g and b are constant.

Boundary conditions

The solution of egs. (1)—(3) for the three components of
velocity and the pressure throughout a die require
specifying boundary conditions. At both the die inlet
and outlet, fully developed flow is assumed, that is

ou/dx=0andv=w=0 (10)
where the coordinate x is taken in the extrusion direc-
tion.

The problem considered here has a plane of sym-
metry at ¥ = 0. In such case, one can take advantage of

this symmetry to halve the domain by imposing sym-
metry boundary condition on the plane, that is

v=20u/dy=ow/dy =0 (11)

Similarly, there is a second symmetry plane atz = 0
where

w=0u/dz=09v/9z=0 (12)
No slip is assumed on all die surfaces, that is
v=0 (13)

For the thermal boundary conditions, we may have
a constant temperature profile at the die entrance and
a constant wall temperature.
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Figure 2 Diagram of temperature distribution on the stag-
gered grid.

Method of solution

The previous constitutive equation was solved to-
gether with the conservation equations with the finite
volume method with the unknown velocities, pres-
sure, and temperature, and the central difference tech-
nique was used to determine the governing equations.
To avoid the nonsensical pressure distribution result-
ing from the central difference formulation for the
pressure gradients, a staggered grid technique was
adopted here. Then, the SIMPLE algorithm was used
to calculate the velocity and pressure fields. Details of
the program about the discrete technique mentioned
here are discussed elsewhere.'*™'*

The expression of energy [eq. (3)] under the Carte-
sian coordinate system is

c 6T+ 8T+ aT\ 62T+82T+62T
P\ Wy v@ Yoz N ox? " ay? " az?

+ nyA (14)

where C, is specific heat.

To compute the temperature field, it is necessary to
discretize eq. (14) on the staggered grid shown in
Figure 2.

Pe,< =10
—10=Pe;=0
0=Pe; =10
Pe, > 10
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The discrete expression of T in x direction centered
the node (i j k) is given as

(ai—l + ai+1)T(i/j/k) = ai—lT(i - 1/]/k)
+ TG+ 1,7,k (15)

with

i1 =111t i1 (15a)

Ait1 = Aiv11 — Ai+12 (15b)

%11 = Ay ox, (15¢)

pCu(i,j, k)
412 = Ay (15d)
Ais11 = Ax;10%; (15¢)
pCotli + 1,,K)
P (156)

2Ax;14

where Ax; is the spacing between the grid point (i, k)
and the grid point (i — 1,j,k) in the x direction. In a
similar vein, Ax;,; is defined as the spacing between
grid point (i,j,k) and the grid point (i + 1,j,k), and 8x; is
the half-spacing between grid point (i — 1,j,k) and the
grid point (i + 1,jk). To reflect the influence of heat
convection and conduction to temperature field, the
Peclet number (Pe) was used here, which represents
the ratio of heat convection to conduction:

a2
P€[ = —
a1

(I=i—1,i+1) (16)

where [ is defined as a variable, which is equal to i —
lori+ 1.

According to the magnitude of Pe, Patankar'” pro-
vided a simple method to determine the coefficient of
temperature in eq. (15), which is demonstrated next.

In the caseof I =i — 1

a(i—1,j,k)=0

a(i—1,j,k) = (1 + 0.1P¢))a,,

a(i —1,j,k) = [(1 — 0.1Pe,)° + Pe/]a;,
a(i —1,7,k) =a;,

(17a)
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Figure 3 Diagram of a quarter of a coat hanger die.

and in the case of [ =i + 1

Pe,< =10
—10=Pe; =0
0=Pe =10
Pe; > 10

Then eq. (15) can be rewritten as

[a(i = 1,7,k) +a(i + 1,j,0)]T(,jk) = a(i = 1,j,k)
X TG —1,jk)+a(i+1,j,0T0G+ 1,7,k (18)
Similarly, we obtained the corresponding coefficient
of temperature in the y and z directions, and then, the
discrete expression of eq. (15) was given:
AT(,jk) =a(i —1,7,0)TG — 1,j,k) +a(i +1,j,k)T
X (i+1,j,k)+bG,j—1kT>G,;7—1,k) +b(ij+1,kT
X (i,j + 1Lk) + c(i,jk — 1)T(,j,k— 1)+ c(i,jk+ 1T
X (i,,k + 1) + n(i,jk)v(@i,jk) (19a)

where A to C represents the coefficient of temperature.

With the following equation:

A=a(i—1,jk) +a(i + 1,j,k) + b(i,j — 1,k)

+b(i,j+ 1k)+c(ijk—1)+c@jk+1) (19b)
m and ¥ at the grid point (i,j,k) can be calculated with
egs. (6) and (7), respectively.

Solution procedure

A finite volume method was used to mesh the flow
domain. Equations (1) and (2) were first solved for the
three components of velocity and the pressure at the
grid points under the specified boundary conditions
and specified 7 field. Then, eq. (6) was used to calcu-
late the m field with the assumed temperature field
and known velocity gradients. After both the flow

ali + 1,jk) = —a,

a(i + 1,j,k) = [(1 + 0.1Pe))® — Pe/la, ,
a(i +1,7,k) = (1 —0.1Peja,,
a(i+1,7,k)=0

(17b)

field and m field convergence, eq. (15) was then solved
to obtain the temperature field. The process was re-
peated until convergence was reached. The iterative
procedure was carried out as the following steps:

1. The fields of velocity and pressure were com-
puted by solution of the momentum and conti-
nuity equations with the specified fields of n and
temperature.

2. The field of m was computed with the known
velocity gradients.

3. We repeated steps 1 and 2 until convergence was
reached.

4. The field of temperature was computed with eq.
(15)

5. Steps 1-4 were repeated until convergence was
reached.

When solving the fields of temperature and flow,
we found it necessary to proceed carefully and use
underrelaxation factors. The underrelaxation factors
for the calculation of m field and temperature field
were 0.7 and 0.1, respectively. Values much higher
resulted in growing oscillations of the n and temper-
ature fields.

SIMULATION RESULTS AND ANALYSIS

The coat hanger die studied here had a manifold with
a rectangular cross-section. Because of the symmetry,
only a quarter of the whole die was simulated in the
computer modeling, which is shown in Figure 3. Fig-
ure 4 shows the developed mesh of finite volume.
There were a total of 33,693 grid points corresponding
to 29,280 control volumes.
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Figure 4 Mesh of finite volume for a quarter of coat hanger
die.

The properties of material polystyrene (PS) used
here are presented in Table I. The values were col-
lected from Demay et al.’s” article. The relaxation time
parameters were obtained from direct rheological
measurements. The inlet temperature was set at 473 K,
and the volumetric flow distribution at the exit of the
die is plotted in Figure 5. Except for the side of the die,
the flow uniformity was acceptable.

To investigate the flow behavior of the polymer
melt inside the coat hanger die, we plotted v’s on
the x — y plane in Figure 6, where the arrowhead
indicates the direction of velocity and the length of
the stem indicates the magnitude of v. The thickness
components vanish in this plane. As shown in the v
plot, the flow behavior of the polymer melt at the
surface of symmetry was visible. In the entrance
region, the polymer melt mainly flowed along the x
direction. However, once arriving at the manifold
region, the polymer melt flowed along the manifold
mainly, and the velocity along the manifold de-
creased. From the arrow shown in Figure 6, we
know that the transverse components initially de-
veloped around the neck, weakened gradually in
the damper region and slot region, and eventually
vanished in the die-lip region, where only the axial
components existed. Figure 7 shows the v’s in the x
— z plane, which was the side view of the coat
hanger die. The transverse components vanished in
this plane. The development of the thickness com-
ponents paralleled that of the transverse compo-
nents. The thickness components also vanished in
the die-lip region, and the parabolic profile could be
clearly seen for the axial components in this region.

Figure 8 gives the isobars at the x — y plane with
inlet and wall temperatures of 473 K. At the entrance
of manifold, the pressure was much greater than that
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Figure 5 Exit flow distribution from the die.

at the end of manifold. This also indicated why the
polymer melt flowed mainly along the manifold di-
rection once it entered into the manifold section from
the entrance of the die. As also shown in Figure 8, in
those sections of manifold and damper, the pressure
was always higher at y = 0, which was the die center,
than in the side of the die. The slot section was the
transition region, and the pressure distribution grad-
ually flattened out as the polymer stream flowed
down the channel. Hence, we know that before the
die-lip region was entered, there were always flows
from the center of the die to its far end. This flow was
helpful for uniform distribution of exit flow rate. The
contour line at the entrance of die lip was fairly par-
allel to the die exit width at the edge area of the die.
This also indicated that a relatively uniform flow at
the die edge was predicted.

In this study, we assumed the wall temperature to
be constant, and the inlet temperature was set at 473
K. Figures 9 and 10 present the temperature field
plotted on the x — y surface with constant wall tem-
peratures of 473 and 493 K, respectively. In these two
cases, the predicted highest temperature was at the
center of manifold region, not in the die-lip region.
This seemed to be suspicious. Generally speaking, in
the die-lip region, the shear rate is highest, and so is
temperature. However, by the center of manifold, the
heat conduction was relatively weak because of the

TABLE I
Material Properties
p Specific heat Mo a E/R T, Conductivity Relaxation
Material (kg/m?) Jg 'K (Pa s) (K™Y (K) (K) b (Wm K™ time
PS 1040 19 19,860 —576 3200 473 1.6 0.17 0.28
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Figure 6 Velocity distributions at the x — y surface of a
quarter of the coat hanger die.
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Figure 7 Velocity distributions at the x — z plane of a
quarter of the coat hanger die.
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Figure 8 Isobars at the x — y surface of a quarter of the coat
hanger die.

thicker gap. Hence, the viscous dissipation made the
temperature in the melt rise significantly. Figures 11
and 12 show the corresponding temperature distribu-
tions on the x — z surface of the coat hanger die. From
the temperature distribution on the side view of the
coat hanger die, we know that in the manifold in the
transition region near the die wall, the temperature
was higher than that near the x — y plane. This was
because of the higher shear rate. When the wall tem-
perature was 473 K, from the damper region along the
machine direction, the temperature in the melt de-
creased gradually. Eventually, in the die-lip region,
the temperature in the melt approached the wall tem-
perature because the opening of the slit was only 0.25
mm. As a comparison, when the wall temperature was
493 K, from the damper section along the machine
direction, the temperature in melt increased gradually

474
476

478
480

482

45 40 35 30 25 20 15 10 5 O
y(mm)

l4g4

Figure 9 Temperature distributions at the x — y surface of
a quarter of the coat hanger die with inlet and wall temper-
atures of 473 K.
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Figure 10 Temperature distributions at the x — y surface of
a quarter of the coat hanger die with an inlet temperature of
473 K and a wall temperature of 493 K.
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Figure 11 Temperature distributions at the x — z surface of
a quarter of the coat hanger die with inlet and wall temper-
atures of 473 K.
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because of the powerful heating of the die wall. Hence,
in the manifold, the viscous dissipation, other than
heat conduction, played a key role in the determina-
tion of the temperature distribution in the melt be-
cause of the thicker gap. However, in other regions in
the die, the wall temperature had a key effect on the
polymer melt distribution.

CONCLUSIONS
A procedure for analyzing the behavior of noniso-
thermal viscous polymer melt flow in a coat hanger
die was carried out. The velocity field, pressure
field, and temperature field on the symmetry planes
were plotted. The results illustrate that the highest
temperature occurred by the center of manifold due

to the combined effects of viscous dissipation and
heat convection rather than by the die-lip region.
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Figure 12 Temperature distributions at the x — z surface of
a quarter of the coat hanger die with an inlet temperature of
473 K and a wall temperature of 493 K.
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The result predicted here is important for the pro-
cessing of heat-sensitive materials, for instance,
poly(vinyl chloride). Generally speaking, the tem-
perature in the die lip is considered to be highest
due to the higher shear rate. Hence, controlling the
temperature in the die lip in an acceptable range is
the key measure for ensuring the extrudate quality
in processing the heat-sensitive materials; however,
the temperature in the die lip was not the highest in
the simulation presented here. Even when the temper-
ature in the die lip is controlled in a suitable range, the
relatively higher temperature in the manifold may still
cause degradation of the processed material. In the
regions where the die gap is relatively small, the wall
temperature plays a key role in the determination of
the temperature distribution in the melt. Obviously,
being full 3-D and nonisothermal, the computer model
should be much closer to the reality than those one or
two nonisothermal simulations of a coat hanger die
mentioned previously.
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